Formalization of Continuous Probability Distributions
نویسندگان
چکیده
Continuous probability distributions are widely used to mathematically describe random phenomena in engineering and physical sciences. In this paper, we present a methodology that can be used to formalize any continuous random variable for which the inverse of the cumulative distribution function can be expressed in a closed mathematical form. Our methodology is primarily based on the Standard Uniform random variable, the classical cumulative distribution function properties and the Inverse Transform method. The paper includes the higher-orderlogic formalization details of these three components in the HOL theorem prover. To illustrate the practical effectiveness of the proposed methodology, we present the formalization of Exponential, Uniform, Rayleigh and Triangular random variables.
منابع مشابه
A continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملClassification and properties of acyclic discrete phase-type distributions based on geometric and shifted geometric distributions
Acyclic phase-type distributions form a versatile model, serving as approximations to many probability distributions in various circumstances. They exhibit special properties and characteristics that usually make their applications attractive. Compared to acyclic continuous phase-type (ACPH) distributions, acyclic discrete phase-type (ADPH) distributions and their subclasses (ADPH family) have ...
متن کاملPREPRINT – DO NOT DISTRIBUTE A Type Theory for Probability Density Functions
There has been great interest in creating probabilistic programming languages to simplify the coding of statistical tasks; however, there still does not exist a formal language that simultaneously provides (1) continuous probability distributions, (2) the ability to naturally express custom probabilistic models, and (3) probability density functions (PDFs). This collection of features is necess...
متن کاملStochastic Comparisons of Probability Distribution Functions with Experimental Data in a Liquid-Liquid Extraction Column for Determination of Drop Size Distributions
The droplet size distribution in the column is usually represented as the average volume to surface area, known as the Sauter mean drop diameter. It is a key variable in the extraction column design. A study of the drop size distribution and Sauter-mean drop diameter for a liquid-liquid extraction column has been presented for a range of operating conditions and three different liquid-liquid sy...
متن کاملFormalization of the Standard Uniform Random Variable in HOL
Continuous random variables are widely used to mathematically describe random phenomenon in engineering and physical sciences. In this paper, we present a higher-order logic formalization of the Standard Uniform random variable. We show the correctness of this specification by proving the corresponding probability distribution properties within the HOL theorem prover and the proof steps have be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007